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Abstract
We examine bootstrap percolation in d-dimensional, directed metric graphs in
the context of recent measurements of firing dynamics in 2D neuronal cultures.
There are two regimes depending on the graph size N. Large metric graphs
are ignited by the occurrence of critical nuclei, which initially occupy an
infinitesimal fraction, f∗ → 0, of the graph and then explode throughout a
finite fraction. Smaller metric graphs are effectively random in the sense that
their ignition requires the initial ignition of a finite, unlocalized fraction of the
graph, f∗ > 0. The crossover between the two regimes is at a size N∗ which
scales exponentially with the connectivity range λ like N∗ ∼ exp λd . The
neuronal cultures are finite metric graphs of size N � 105 − 106, which, for
the parameters of the experiment, is effectively random since N � N∗. This
explains the seeming contradiction in the observed finite f∗ in these cultures.
Finally, we discuss the dynamics of the firing front.

PACS numbers: 84.35.+i, 02.10.Ox, 89.75.−k, 89.75.Hc, 64.60.aq, 64.60.ah

1. Introduction

Percolation in directed graphs deals with propagation of firing of nodes whereby each node
which was ‘on’ in turn ignites any node that can be reached by following the directed
links. Bootstrap percolation (BP) generalizes conventional percolation by applying a stricter
definition of ignition; a site only ignites when m > 1 sites pointing to it were ignited earlier
[1–5]. This generalization proved to be useful in many contexts (see [3, 6] and references
therein). Here, we have questions in mind in connection with recent measurements of 2D
neuronal cultures (NC) [7–10].

In these NC experiments, one grows a 2D culture of N ∼ 105–106 neurons. After the
culture develops connections and forms a network, one externally ignites a variable number
of neurons by varying a ‘firing threshold’ in the culture, and observes how many neurons
eventually will have fired. The experiments show that, as the fraction of initially (i.e.,
externally) excited neurons exceeds a certain non-zero critical value, f∗ > 0, the activity of
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the network jumps abruptly to a basically complete ignition of the network within a very short
time, while below this threshold, the firing essentially does not spread.

Thus, the experiment exhibits a sharp transition in the number of excited neurons [10]
when a certain initial firing threshold (fraction) is exceeded. A simple theoretical model was
able to capture this phenomenon by describing the network in terms of a process very similar
to BP in a random graph. There are some paradoxes in this result which the current paper will
resolve. The random graph model lacks an important ingredient of actual neuronal networks
in assuming that all pairs of neurons have equal probability to be connected. This is in contrast
to the experimental reality that the connection probability of close-by neurons is much higher
than that of distant ones [9].

Taking these distances into account, we are in the realm of embedded networks, where the
neurons have a fixed position in physical space and, as a consequence, the neural connections
have a certain distance. This leads to an apparent paradox, because it is known—and will be
discussed below—that in embedded graphs that have a metric, such as lattices, it is enough to
externally excite an infinitesimal fraction of the neurons, f∗ → 0, to activate a finite, non-zero
fraction of the network. This would seem to contradict the experimental findings of [10] with
their finite threshold. Or, asking differently, (i) why does the random graph picture of [10]
describe so successfully the measurements of a 2D NC although it completely neglects the
notions of space and vicinity? (ii) More generally, when can real-space networks be described
as effectively random networks, and under which conditions does one have to take space into
consideration?

As we explain below, the puzzle is resolved because there is a basic difference in the
manner in which random and metric graphs are ignited. In the latter, it suffices to initially turn
on localized excitation nuclei, which are then able to spread an excitation front throughout
the spatially extended network. In contrast, by their definition, there are no such nuclei in
the random graphs, which lack the notion of locality, and one has to excite a finite fraction
of the neurons to keep the ignition going. Still, as we shall show, the experimental network,
which is obviously an example of a metric graph, is effectively random, since its finite size
makes the occurrence of excitation nuclei very improbable (an answer to question (i)). More
generally, we see that one can change the effective behavior of a network by changing its finite
size N or by changing the finite range of connectivity λ (question (ii)). For infinite graphs,
what matters is the manner in which these two quantities approach infinity. The crossover
between effectively random and metric behaviors is determined by a size N∗, which explodes
exponentially with the connectivity range, N∗ ∼ exp λd , where d is the dimensionality. We also
discuss the dynamics of the propagating firing cluster in effectively metric and random graphs.

2. The basic setting

We consider ‘neural networks’, that is, directed graphs with N ‘neurons’, by which we mean
nodes connected by directed links. We assume that any ordered pair, i �= j, of nodes can only
be connected by one link. The connections are described by the adjacency matrix A, with
Aij = 1 if there is a directed link from j to i, and Aij = 0 otherwise.

The neurons fire, and once they fire, in the model we consider here, they stay ‘on’ forever.
A neuron is supposed to be on at the beginning of time with some probability f and will be
on at time t + 1 if at time t it was on, or if at least m of its upstream (incoming) nodes were on
at time t ( m may be termed ‘minimal influx’). This is described by the evolution equation

si(t + 1) = si(t) + (1 − si(t))θ

(∑
j

Aij sj − m

)
, (1)
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where si(t) describes the state of the neuron at time t. It is on if si(t) = 1 and off if si(t) = 0.
Finally, θ is the step function.

This setting is practically equivalent to BP (which is also known as ‘k-core percolation’).
In a typical BP scenario, the nodes of a graph or lattice, usually undirected ones, are randomly
populated, and those nodes having less than k edges are ‘pruned’ [3]. After iterative pruning
there remains a connected ‘k-core’, which may vanish depending on the system parameters.
It is straightforward to see that the analog of pruning is the propagation of the firing cluster
throughout the NC; the nodes that are pruned in each iteration of BP are equivalent to the newly
excited neurons in each time step of the NC dynamics. In fact, if the network is d-regular, then
a NC with a minimal influx of m firing inputs can be mapped to a directed BP process with
k = d − m. In the context of NC, one may term the dynamics of firing propagation ‘quorum
percolation’ [10] since the ignition of a certain neuron requires a ‘quorum’ of m firing inputs.
It also hints for the potential uses of these models to describe the spread of diseases, rumors
and opinions.

Some facts are obvious from the definition of the model. The dynamics is monotonic,
since a firing neuron can never turn off and therefore si(t + 1) � si(t). Therefore, for any
initial condition s(0) ≡ {si(0)}Ni=1 and any j one has that limt→∞ sj (t) ≡ sj (∞) exists.
Furthermore, if N is finite, then the system (1) converges to a steady state (in finite time).

The dynamics is conveniently characterized by the initial firing concentration, f defined
by fN(s, 0), where, for any t,

fN(s, t) = N−1
N∑

j=1

sj (t).

It has been observed [10] that in directed random graphs, with fixed degree distribution, there
is a value f∗ > 0 (depending on this degree distribution) such that for large enough N and for

fN(s, 0) > f∗

there is ‘substantial firing’, characterized by

lim
N→∞

fN(s,∞) > fN(s, 0),

for ‘many’ random graphs and for ‘many’ initial distributions s (in a suitable measure theoretic
sense, for example with probability 1 with respect to the uniform measure). For m = 1 all this
is in the realm of percolation theory.

2.1. Random graphs

The study of this problem for directed random graphs can be found in [10]. Based on
an ensemble average of (1) it yields a self-consistency equation for the fraction � ≡
limt→∞ fN(·, t) of typically lit neurons at infinite time (in practice, when stationarity has
been reached, no later than t = N ):

� = f + (1 − f )Prob (#firing inputs � m) = f + (1 − f )�(m,�), (2)

where the collectivity function �(m,p) accounts for the combinatorics of choosing at least m
firing inputs of a randomly chosen node, when each node fires with a probability �. Assuming
the probability for a node to be of in-degree k is pk , the combinatorial expression for � is

�(m,�) =
∞∑

k=m

pk

k∑
�=m

(
k

�

)
��(1 − �)k−�. (3)
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Figure 1. A simple example of a directed graph with k = 3 and m = 2, where two initially
ignited sites generate an infinity of ignited sites along a diagonal strip. The times of ignition are
indicated by the numbers next to the circle. Also note that the ignited strip gets thicker (from 2 to
3 diagonals) when the site numbered 5 is close to another site which was initially ignited.

For similar treatments of undirected lattice and random graphs, see [1, 11, 12]. When the
average in-degree k̄ = ∑

k kpk and the minimal influx m are large, k̄, m 
 1, one can neglect
the variance in the number of firing inputs and the number of firing inputs into a node of
degree k is ∼k�. As a result, �(m,�) can be approximated by its mean-field expression
�(m,�) � Prob(k� � m) � ∫ ∞

k=m/�
pk; see, e.g., [13]. In the case of a regular graph, with

in-degree k = k̄ at all nodes, pk = δk,k̄ , one finds �(m,�) � θ(� − m/k̄).
Equation (2) can be rewritten as a function from � to f, f = F(m,�) = (�−�)/(1−�),

or, using the inverse function, as �(m, f ) = F−1(m, f ). The solution of the latter equation
jumps from � � f to � � 1 when ∂�F = 0 (i.e., F−1 is multi-valued), or equivalently
when ∂��|�∗ = (1 − �|�∗)/(1 − �∗). It follows from the definition of � that there exists
such critical �∗ and f∗ = F(m,�∗) > 0. In the simple case of the regular graph, neglecting
fluctuations in the mean-field approximation implies that every node has exactly k̄� firing
inputs and, as a result, f∗ � m/k̄. This mean-field result approximates f∗ well when the
in-degree has a large average k̄ and relatively small variance.

2.2. Metric graphs

Our aim here is to consider not only connectivity but also metric, mimicking in a poor man’s
way the idea that neurons have axons of finite length and are located at some position in Rd

(with d = 2 or d = 3, depending on the experiment).
Things change rather drastically, when the notion of metric and proximity is added to the

game, for example by putting the neurons on a lattice. In this case, we can show that f∗ = 0
no matter what m is as long as the coordination number in the lattice exceeds m.

A simple example is the triangular lattice of figure 1 where, for each node, the three edges
pointing to the north, east and NE are outputs and the three edges coming from S, SW and W
are inputs. For m = 2, it suffices that somewhere in the lattice two neighboring nodes fire to
ignite a finite fraction of the lattice (i.e., f∗ = 0). First, a diagonal stripe propagates through

4
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the lattice. When this diagonal meets a firing node at a neighboring diagonal it ‘activates’ this
diagonal which is now included in the propagating stripe. Eventually, the stripe thickens and
might cover the whole lattice3.

Note that what really matters here is the appearance of a firing nucleus. Namely, if
somewhere in the graph 2 neighbors are lit up at time 0, then a sizeable part (or all) of the
graph will burn. Similarly, when m inputs are needed, a nucleus of size (proportional to) m
will suffice to ignite a large burning within the graph.

Our focus is on the transition between the two BP scenarios we have described so far: the
random non-metric graph and a graph which is embedded in a metric space. Apparently, the
question in the metric graph is that of the probability of a nucleus being lit up at time 0. In
the following section, we propose a model which comes relatively close to the experimental
setup as described in [7, 10].

3. Networks in space

Consider the following model of a spatial network: a large number, N, of nodes are distributed
randomly in Rd with a number density n = N/V . In other words, there are, on average, n
nodes per unit volume. We now give ourselves a ‘vicinity function’ g : R+ → R+, with the
property

n

∫
ddx g(|x|) = k̄. (4)

A directed edge connects any two nodes with a probability (correlation) g(r) that depends
on the distance r = |xi − xj |. Typical examples of functions g are (normalized versions of)
g(r) ∼ exp(−r/λ), g(r) ∼ exp(−(r/λ)2) or a scale-free type g(r) ∼ r−α . For the scale-free
graph, we define an effective length scale λe as the radius of the sphere drawn around a node
that contains ‘most’ of the nodes that are connected to central one, e.g., 99% of them.

3.1. Infinite graphs

There is an essential difference between finite, but large, graphs and infinite graphs. We first
deal with the infinite graph. Since the graph is infinite, one can keep f arbitrarily close to
0, and still have, somewhere in this infinite graph, any desired firing nucleus. Of course, the
probability of finding, in any finite region, a big nucleus is exponentially small in the number
of nodes which are supposed to be lit up in a cluster at time 0.

Still, in infinite volume, and for any f > 0, we can assume that there is a nucleus much
bigger than the scale λ of g(r), resp. much bigger than λe when g is like a power law, and that
inside of this nucleus the firing fraction at time 0 is a certain flocal (which one can choose as
close to 1 as one wishes).

Consider now a non-lit node which is close to the boundary of such a nucleus (and assume,
for simplicity, that the nucleus contains a large sphere of lit nodes). There will also be some
‘hair’ lit up, but we neglect this, since it only will make propagation stronger. On average,
half (if the sphere is big enough) of the inputs of the given node come from the sphere. It
follows that to fire this node it is enough to have flocalk̄/2 � m (and one can take any flocal,
e.g., 1 since we are considering an infinite graph). As a consequence, the firing sphere will
explode throughout a large part of the graph.

3 Strictly speaking, the propagation of the fire through the graph is not connected to the metric properties, but only
to the topology. However, here, and in the other examples, the topology is most simply described by mapping the
nodes of the graph in Rd and describing connectivity as a function of distance.
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There are some corrections to this simple mean-field condition, which take into account
the combinatorics of choosing the m (or more) firing inputs from the sphere. However, these
corrections are negligible if k̄, m 
 1. The corrections amount to solving (2) with keff = k/2
and flocal. In summary, to fire a spatial network all that is needed is a large enough nucleus
(�λ), which will be found in an infinite graph (but not in experimentally available NC graphs)
even at infinitesimal f .

Thus, we have the following dichotomy: either λ is finite and then f∗ = 0 as we argued
above, or at λ → ∞ we return to the random graph with its finite f∗ > 0 because then any
two nodes are connected with the same probability. The argument above applies also to a
scale-free network when λ is replaced by the effective scale λe.

3.2. Finite graphs and comparison with experimental data

The ignition of a metric graph requires the appearance of a large enough nucleus. It is therefore
reasonable to define, in a statistical manner, that a graph is ignited when the probability of
finding at least one such nucleus, pnuc, becomes non-negligible (say 50%). Ignition occurs
when the initial firing, f , exceeds a critical value f∗. In metric graphs, as we show below, the
ignition point is a function of the graph size N, the connectivity range λ, the average in-degree
k̄ and the minimal influx m. In the following, we heuristically estimate f∗(N, λ, k̄,m). We
show that there is a graph size, N∗, where the graph crosses over from an effectively random
regime, f∗ � f ran

∗ > 0 (the superscript ‘ran’ denotes the value for a random graph), to the
effectively metric regime, f∗ → 0.

We consider a metric graph of N nodes and density n = N/V . The nodes connect
according to a vicinity function g with a scale λ. At t = 0 a randomly chosen fraction f of the
nodes is ignited. For our purposes, we can assume that the critical nucleus is approximately a
sphere of radius λ, containing Nλ ∼ nλd nodes.

To ignite the graph, the local initial firing fraction flocal inside the nucleus must exceed
f ran

∗ � m/k̄ of the corresponding random graph. We therefore look for the circumstances when
it is likely to find at least one such lit nucleus. Typically, Nλ 
 1 so that the number Lλ of lit
nodes inside the sphere distributes normally with mean f Nλ and variance σ 2 = f (1 − f )Nλ.
The probability, sλ, that the sphere of radius λ becomes critical is therefore

sλ = Pr(Lλ � f ran
∗ Nλ) = 1

σ
√

2π

∫ ∞

f ran∗ Nλ

dLλ exp

[
− (Lλ − f Nλ)

2

2σ 2

]
� 1

z
√

2π
exp

(
−1

2
z2

)
,

(5)

where

z = f ran
∗ Nλ − f Nλ

σ
= f ran

∗ − f√
f (1 − f )

Nλ
1/2 (6)

is the normalized deviation of the required number of lit nodes f ran
∗ Nλ from its mean f Nλ. To

obtain the � in (5) we have simply replaced the integral by its lower boundary value (which
is a good approximation for the large z we consider).

The nucleation probability pnuc becomes relevant when the expected number of nuclei,
Nsλ, exceeds one. This defines a crossover condition, sλ � N−1, which, by inverting (5),
leads, for large N, to

z∗ � (2 log N)1/2. (7)

This relation determines the fraction f∗ required to ignite a graph of size N, vicinity scale λ

and when requiring a value f ran
∗ for a random graph with the same connectivity (i.e., degree

6
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Figure 2. The minimal firing fraction f∗ is plotted as a function of the parameter ξ = log N/Nλ.
The solid line is the solution of (8), f∗ = (2ξ + 1)−1

(
f ran∗ + ξ − √

ξ(ξ + 2f ran∗ (1 − f ran∗ ))
)
,

whereas the dashed lines are the asymptotic solutions, f∗ ∼ ξ−1, in the metric regime (9), and
f ran∗ − f∗ ∼ ξ1/2 in the random regime (10).

distribution pk) but no particular metric properties (figure 2). We find from (6)–(7) that the
fraction f∗ at the ignition transition is given by

(f ran
∗ − f∗)2

f∗(1 − f∗)
Nλ � 2 log N. (8)

Solving (8) for f∗, one finds that if f∗ is very small which is the case for metric graphs,
then to ignite this metric graph of size N one would need to externally ignite a fraction:

f∗ � 1

2
(f ran

∗ )2 Nλ

log N
. (9)

Indeed, this fraction vanishes for infinite graphs, but only logarithmically.
At the other extreme, of effectively random graphs, f∗ is somewhat larger; from (8) we

obtain

f∗ = f ran
∗ − [2f ran

∗ (1 − f ran
∗ )]1/2

(
log N

Nλ

)1/2

. (10)

In this case, as announced earlier, f∗ increases with Nλ ∼ nλd and decreases logarithmically
with the size of the network, N. A reasonable definition of the crossover between effectively
random and effectively metric graphs is the size N∗ at which the required f∗ is significantly
reduced relative to the random graph value, f ran

∗ , say f∗ = αf ran
∗ with, e.g., α = 1/2

(figure 2). From (8), we find that this occurs at

N∗ � exp

[
(1 − α)2f ran

∗
2α(1 − αf ran∗ )

Nλ

]
� exp

(
f ran

∗
4 − 2f ran∗

Nλ

)
. (11)

It is clear from the discussion that the relevant dimensionless parameter in the system
is ξ ≡ log N/Nλ ∼ log N/λd . The random graph regime is ξ � 1 whereas graphs are
effectively metric in the regime ξ 
 1. The critical fraction f∗ changes its scaling from
f ran

∗ − f∗ ∼ ξ 1/2 in the random graph regime to f∗ ∼ ξ−1 in the metric regime.

7
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In the NC experiment [7–10], the 2D density of the neurons ranges between n = 150
and 1000 neurons mm−2 and their average connectivity is k̄ = 60–150 inputs/neuron. The
connectivity scale is approximately λ = 1–2 mm [9] and the minimal nucleus size is therefore
about Nλ = πnλ2 = 500–10 000 neurons. The minimal influx in these experiments is m ∼ 15
before a drug that weakens the synapses is added, which increases the minimal inputs to
m ∼ 80. These values correspond to minimal ignition fractions of f ran

∗ = 0.1–0.25 for the
drug-free NC and f ran

∗ = 0.5–1 after the drug was added.
By the substitution of the experimental values in the formula for N∗ (11), we find that the

range of crossover size for the drug-free NC is N∗ = 3×105–10300. Note that the lower regime
is obtained for the extremal conditions of a very dilute culture n = 150 with low connectivity
range, λ = 1 mm, which is also highly connected, k̄ = 150. In fact, this combination of
parameters is not feasible, since dilute networks tend to be less connected, and the crossover
range N∗ is well above the experimental size of N ∼ 105–106 neurons. When drug is added,
N∗ explodes to N∗ ∼ 1070–102000. These ridiculously large numbers—the number of atoms
in the universe is somewhere around 1080 whereas the number of neurons in the human brain
is ∼1011—imply that the NC can safely be regarded as a random graph despite the fact that it
is actually a metric graph embedded in space. In other words, it is highly improbable to find
an igniting nucleus and the NC ignites ‘homogeneously’ at f ran

∗ . Therefore, geometry does
not seem to come into play in those experiments, only topology.

Interestingly, the situation in physical models of BP is quite the opposite. In typical
situations, one would have λ ∼ 1–2 lattice constants or Nλ ∼ 3–10 (for example, in the
triangular lattice from figure 1, Nλ = 3). This implies moderate crossover size N∗ ∼ 10–
105. Thus, unlike NC experiments, even relatively small graphs, of size easily accessible to
experiments and simulations, are well within the metric regime, where f∗ → 0 (see, e.g.,
[3]). It also renders NC as a rare example for naturally occurring, large (effectively) random
graphs.

4. Another mechanism for transition in infinite graphs

As we said, as long as the graph is infinite, there is a trivial phase transition in f∗: either the
graph has some scale, λ < ∞, and f∗ = 0, or it does not and f∗ > 0. The transition between
these two behaviors appears at λ = ∞. As a side remark we note that one can shift the
transition to a finite λ by the following procedure: divide the edges into two sub-populations,
one that spreads uniformly without any distance dependence and one that forms according
to g(r). The probability that an edge connects i and j is then g(|ri − rj |) + k∞/N , where
k∞ � k̄ is the number of ‘random’ edges per node. This mechanism enables a smoother
transition. For any f ran

∗ , there is a transition connectivity, kc
∞, given by 1 − kc

∞
/
k̄ = f∗,

where the system changes its behavior. When k∞ > kc
∞, no nucleus is enough because it

is now impossible to surpass f ran
∗ locally, and the graph needs to compensate by a uniform

f∗ = (
k∞ − kc

∞
)/

k̄ > 0. The parameter k∞ may be varied by varying the connectivity
range, λ.

5. Dynamics

Having dealt with the total number of lit nodes at ‘infinite’ time, we next discuss the dynamics
of how this state is reached. One may think of a dynamical system for the space-dependent
ensemble average �(r, t) = 〈si(t)〉 in the vicinity of r.

8
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The average is, for example, over a ball of radius λ:

〈si(t)〉 ≡
∑

j :|rj −r|<λ sj (t)∑
j :|rj −r|<λ 1

.

If �(r, t) is smooth enough we can write a dynamical equation,

�(r, t + 1) = �(r, t) + (1 − �(r, t))θ
(

n

∫
dr′g(|r′ − r|)�(r′, t) − m

)
, (12)

where g is the vicinity function with its scale λ as before.
The time continuous version is simply

∂�(r, t)
∂t

= (1 − �(r, t))θ
(

n

∫
dr′′g(|r′′|)�(r + r′′, t) − m

)
, (13)

with the change of variables r′′ = r′ − r. If �(r, t) is smooth over a scale ∼λ, then we can
approximate

�(r′, t) ∼ �(r, t) + r′′ · ∇�(r, t) + 1
2 r′′ · ∇2�(r, t) · r′′.

One finally gets

∂�(r, t)
∂t

= (1 − �(r, t))θ
(
k̄�(r, t) + r2

0 ∇2�(r, t) − m
)
, (14)

where r2
0 = 1

2d

∫
dx|x|2g(|x|). This intuitive result basically says that �(r, t) increases at a

rate that is a product of the probability that r was not already ignited and a very steep function
of the average number of firing neurons in its vicinity. This averaging is performed by taking
the Laplacian. The dynamics will tend to smooth firing fronts, since concave regions of a firing
front have more firing neurons around them and will propagate faster than convex regions of
the front.

We will restrict our discussion to the case of the effectively random graph, where the
firing fraction �(t) is homogeneous in space. The mean-field equation in this case is

d�

dt
= (1 − �)θ

(
� − m

k̄

)
. (15)

In other words, below m/k̄, d�/dt = 0 and the graph will never ignite, and above this value
d�/dt � 1, which means that the graph fires within a few time steps with the trivial exponential
saturation (and that the continuous time approximation is probably not very good, since the
time scale is one step).

It is interesting to look more closely at the collectivity function �(m,�) of (3), which
was approximated in (15) by the step function. If k̄ 
 1, one can approximate the binomial
distribution in (3) by a normal one, N(k�, σ), with a mean k� and a variance σ 2 = k�(1−�).
The summation is replaced by integration,

k∑
�=m

(
k

�

)
��(1 − �)k−� = 1

σ
√

2π

∫ ∞

m

d� exp[−(� − k�)2/2σ 2].

When all nodes have in-degree about k, that is, pk � δk,k̄ , the collectivity function is
approximated as in (5) by the value of the integral at the boundary, and we get

�(m,�) � 1

w
√

2π
exp

(
−1

2
w2

)
, w = m − k̄�

(k̄�(1 − �))1/2
.

The dynamics is then

d�

dt
= (1 − �)�(m,�) = 1

2
(1 − �)

1

w
√

2π
exp

(
−1

2
w2

)
. (16)
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Taking into account in (16) fluctuations in the number of firing inputs around the average
value of k� allows the possibility that a random graph will eventually ignite even if the initial
firing fraction, f = �(t = 0), is much smaller than f∗ = m/k̄. Of course, this ignition is a
rather slow process. In this regime, the dynamics (16) is approximately

d�

dt
�

(
k̄�

m2

)1/2

exp(−m2/(2k̄�)).

Neglecting the square root and integrating, we find that the contribution is dominated by the
initial value. Thus, � is approximately

�(t) ∼ m2/(2k̄)

log(t∗ − t)
,

with t∗ ∼ exp(m2/(2k̄f )). Note that t∗ is the ‘ignition time’, i.e., the time to ignite a given
fraction of the graph, and it diverges exponentially as f → 0.

If pk is not sharp then one can utilize the mean-field approximation and get �(m,�) =∫ ∞
m

dk pkθ(k −m/�) = ∫ ∞
m/�

dk pk , which is simple to calculate for certain distributions. For
example, if pk distributes exponentially, pk ∼ exp(−k/k̄), then for small � � f ran

∗ = m/k̄

the dynamics is approximately d�/dt � � ∼ exp(−m/(�k̄)). The asymptotic growth
is again logarithmic �(t) ∼ (m/k̄)/ log(t∗ − t), with a somewhat different ignition time
t∗ ∼ exp(m/(k̄f )).

The asymptotic growth is quite different for scale-free in-degree distributions, pk ∼
(k/k0)

−γ , where k0 is a lower cut-off and γ > 1. In this case, the dynamics far from f∗
is d�/dt ∼ (k0�/m)γ−1. Integrating, one finds that, with initial condition �(0) = f , the
growth in this case is a power law,

�(t) ∼ (f 2−γ − sgn(γ − 2) · t/τ )1/(2−γ ),

with the positive constant τ = (m/k0)
γ−1/|γ − 2|. The ignition time t∗ can be defined by

�(t∗) = f∗, which yields

t∗ = sgn(γ − 2) · τ(f 2−γ − f∗2−γ ).

If 1 < γ < 2, this leads to

t∗ ∼ τf∗2−γ and �(t) ∼ (f 2−γ + t/τ )1/(2−γ ).

For γ > 2 the growth is slower and we get

t∗ ∼ τ/f γ−2 and �(t) ∼ (1/f γ−2 − t/τ )−1/(γ−2).

In this case, the ignition time diverges as f → 0. In the marginal case, γ = 2, we finally find

t∗ ∼ (m/k0) log(f∗/f ) and �(t) ∼ exp (mt/k0) .

It is interesting to note that exponential growth was observed in experiments [14], which
also suggested that the degree distribution is a power law. However, it is not clear whether the
simple model presented here can describe the dynamics and whether the exponential growth is
indeed related to a scale-free degree distribution. It is evident from the last three examples that
the asymptotic growth below f∗ is determined by the tail of the in-degree distribution. Fat-tail
distributions lead to faster growth of the firing region because they have a non-negligible
fraction of ‘hubs’ with many input edges.
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